- a The first worked exercise in the notes for this section proved that $\int_0^{\pi} \sin x \, dx = 2$. Count squares on the graph of $y = \sin x$ above to confirm this result.
- **b** On the same graph of $y = \sin x$, count squares and use symmetry to find:

i
$$\int_{0}^{\frac{\pi}{4}} \sin x \, dx$$
 ii $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ iii $\int_{0}^{\frac{3\pi}{4}} \sin x \, dx$
iv $\int_{0}^{\frac{5\pi}{4}} \sin x \, dx$ v $\int_{0}^{\frac{3\pi}{2}} \sin x \, dx$ vi $\int_{0}^{\frac{7\pi}{4}} \sin x \, dx$

c Evaluate these integrals using the fact that $-\cos x$ is a primitive of $\sin x$, and confirm the results of part **b**.

5 [Technology]

Programs that sketch the graph and then approximate definite integrals would help reinforce the previous very important investigation. The investigation could then be continued past $x = \pi$, after which the definite integral decreases again.

Similar investigation with the graphs of $\cos x$ and $\sec^2 x$ would also be helpful, comparing the results of computer integration with the exact results obtained by integration using the standard primitives.

6 Find the following indefinite integrals.

a
$$\int \cos(x+2) dx$$

b $\int \cos(2x+1) dx$
c $\int \sin(x+2) dx$
d $\int \sin(2x+1) dx$
e $\int \cos(3x-2) dx$
f $\int \sin(7-5x) dx$
g $\int \sec^2(4-x) dx$
h $\int \sec^2(\frac{1-x}{3}) dx$
i $\int \sin(\frac{1-x}{3}) dx$

7 a Find
$$\int \left(6 \cos 3x - 4 \sin \frac{1}{2}x \right) dx$$
.
b Find $\int \left(8 \sec^2 2x - 10 \cos \frac{1}{4}x + 12 \sin \frac{1}{3}x \right) dx$.

8 a If
$$f'(x) = \pi \cos \pi x$$
 and $f(0) = 0$, find $f(x)$ and $f(\frac{1}{3})$.
b If $f'(x) = \cos \pi x$ and $f(0) = \frac{1}{2\pi}$, find $f(x)$ and $f(\frac{1}{6})$.
c If $f''(x) = 18 \cos 3x$ and $f'(0) = f(\frac{\pi}{2}) = 1$, find $f(x)$.

- DEVELOPMENT
- **9** Find the following indefinite integrals, where *a*, *b*, *u* and *v* are constants.

a
$$\int a \sin(ax + b) dx$$

b $\int \pi^2 \cos \pi x dx$
c $\int \frac{1}{u} \sec^2(v + ux) dx$
d $\int \frac{a}{\cos^2 ax} dx$

