$$\int e^{x} dx = e^{x} + c$$
$$x^{n-1} \int e^{x^{n}} dx = e^{x^{n}} + c$$

Tips:

- 1. The integral of e^x is $e^x + c$, it doesn't change
- 2. Change roots/fractions to index power before integrating $3/e^{2x} = 3e^{-2x}$
- 3. Where there are brackets, you can expand $e^{x^2(x-1)} = e^{x^3-x^2}$
- 4. Recall properties of exponential functions $e^{x}e^{y} = e^{x+y}$ $(e^{x})^{p} = e^{px}$ $e^{x}/e^{y} = e^{x-y}$ $\sqrt[p]{e^{x}} = e^{x/p}$

13.3 WORKED EXAMPLE	13.4 WORKED EXAMPLE	
$\int 5x^2 e^{x^3} dx$	$\int e^{2x} \sin(e^{2x}) dx$	