10 a Copy and complete $1 + \tan^2 x = \dots$, and hence find $\int \tan^2 x \, dx$.

b Simplify $1 - \sin^2 x$, and hence find the value of $\int_0^{\frac{\pi}{3}} \frac{2}{1 - \sin^2 x} dx$.

11 a Copy and complete $\int \frac{f'(x)}{f(x)} dx = \dots$

b Hence show that $\int_0^{\frac{\pi}{6}} \frac{\cos x}{1 + \sin x} dx = 0.4.$

12 a Use the fact that $\tan x = \frac{\sin x}{\cos x}$ to show that $\int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \ln 2$.

b Use the fact that $\cot x = \frac{\cos x}{\sin x}$ to find $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cot x \, dx$.

13 a Find $\frac{d}{dx}(\sin^5 x)$, and hence find $\int \sin^4 x \cos x \, dx$.

b Find $\frac{d}{dx}(\tan^3 x)$, and hence find $\int \tan^2 x \sec^2 x \, dx$.

14 a Differentiate $e^{\sin x}$, and hence find the value of $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} dx$.

b Differentiate $e^{\tan x}$, and hence find the value of $\int_{0}^{\frac{\pi}{4}} \sec^2 x e^{\tan x} dx$.

15 a Show that $\frac{d}{dx}(\sin x - x \cos x) = x \sin x$, and hence find $\int_0^{\frac{\pi}{2}} x \sin x \, dx$.

b Show that $\frac{d}{dx}(\frac{1}{3}\cos^3 x - \cos x) = \sin^3 x$, and hence find $\int_0^{\frac{\pi}{3}} \sin^3 x \, dx$.

16 Use the reverse chain rule $\int f'(x) (f(x))^n dx = \frac{(f(x))^{n+1}}{n+1}$, to evaluate:

a $\int_0^{\pi} \sin x \cos^8 x \, dx$

 $\mathbf{b} \quad \int_0^{\frac{\pi}{2}} \sin x \cos^n x \, dx \qquad \qquad \mathbf{c} \quad \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \sin^7 x \, dx$

d $\int_0^{\frac{\pi}{6}} \cos x \sin^n x \, dx$ e $\int_0^{\frac{\pi}{3}} \sec^2 x \tan^7 x \, dx$ f $\int_0^{\frac{\pi}{4}} \sec^2 x \tan^n x \, dx$

17 a Show, by finding the integral in two different ways, that for constants C and D,

$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C = -\frac{1}{4} \cos 2x + D.$$

b How may the two answers be reconciled?