3. The graphs of  $y = x^3 - 7x + 6$  and y = 2x + 6 are drawn



- a) Find the coordinates of their points of intersection P, Q and R.
- b) Find the area bounded by  $y = x^3 7x + 6$  and y = 2x + 6

4. The diagram shows the graphs of  $y = 4e^{-x}$  and  $y = e^{x} - 3$ 



- a) Show that the curves intersect when  $e^{2x} 3e^x 4 = 0$
- b) Hence show, by making a suitable substitution, that the x-coordinate of the point of intersection of the curves is x = ln4
- c) Find the exact area bounded by the curves and the y axis.
- 5. Find the volume of the solid formed when  $y = \ln x$  is rotated about the y axis between y = 0 and 1.
- 6. Find the volume of the solid generated when the area between the curves  $y = x^2$  and  $y = (x 2)^2$  and the x axis is rotated about the x axis.
- 7. Find the volume of the solid formed when the region between the curves  $y = x^2$  and  $y = 8 x^2$  are rotated about
  - a) the x axis
  - b) the y axis
- 8. Write down the formula for approximating  $\int_a^b f(x)dx$ 
  - a) Trapezoidal rule with
    - i) 3 function values
    - ii) 5 function values
  - b) Simpson's rule
    - i) 3 function values
    - ii) 5 function values