$$y(x) \qquad \int y(x)dx$$
$$y = a \qquad ax + c$$
$$y = ax \qquad a\frac{x^2}{2} + c$$
$$y = ax^r(r \neq -1) \qquad \frac{ax^{r+1}}{r+1} + c$$

Since integration is anti-differentiation (the reverse of differentiation) to integrate nx^{n-1} we reverse the steps made to achieve nx^{n-1}

Adding one to the power and bring it down to divide nx^{n-1}

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c$$
$$\int (ax+b)^{n} dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$$

4.1 WORKED EXAMPLE	4.2 WORKED EXAMPLE
$\int 4x dx$	$\int 2x + 5dx$
0	