TRIGONOMETRIC FUNCTIONS $\frac{D}{DX}$ SIN X:

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\sin f(x) = f'(x)\cos f(x)$$

Product, quotient and chain rule also apply to Common question types: trigonometric functions.

Product Rule: $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$

Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$

 $1. \ \frac{d}{dx}A\sin x = A\cos x$ 2. $\frac{d}{dx}A\sin Bx = AB\cos Bx$

3. $\frac{d}{dx}A\sin(Bx+C) = AB\cos(Bx+C)$

4. $\frac{d}{dx}A\sin^c x = \frac{d}{dx}A(\sin x)^c = AC(\sin x)^{c-1}\cos x$

5. $\frac{d}{dx}\csc x = \frac{d}{dx}(\sin x)^{-1} = -(\sin x)^{-2}\cos x = -\cot x \csc x$

2.1 WORKED EXAMPLE

Differentiate $4 \sin x$ with respect to x:

2.2 WORKED EXAMPLE

Show the following is true (hint: use chain rule):

$$\frac{d}{dx}\sin f(x) = f'(x)\cos f(x)$$